BBA 48174

UNCOUPLER-REVERSIBLE INHIBITION OF MITOCHONDRIAL ATPase BY METAL CHELATES OF BATHOPHENANTHROLINE

I. GENERAL FEATURES

CHRISTINE CARLSSON and LARS ERNSTER

Department of Biochemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm (Sweden)

(Received March 6th, 1981)

Key words: Bathophenanthroline-metal chelate; F_1 -ATPase; Uncoupler-reversible inhibition; (Beef heart mitochondria)

(1) Certain metal chelates of 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline, BPh) are potent inhibitors of soluble mitochondrial F_1 -ATPase. (2) The BPh-metal chelate inhibition of soluble mitochondrial F_1 -ATPase is relieved by uncouplers of oxidative phosphorylation. (3) The uncouplers appear to interact directly with the inhibitory chelates, forming stoichiometric adducts. (4) A complex between F_1 and bPh_3Fe^{2+} , containing 3 mol BPh_3Fe^{2+} /mol F_1 , has been isolated. The enzymically inactive F_1 -BPh $_3Fe^{2+}$ complex binds uncouplers, yielding an enzymically active F_1 -BPh $_3Fe^{2+}$ -uncoupler complex.

Introduction

The mitochondrial ATPase 'coupling factor 1' (F_1) [1] is generally believed to constitute the enzyme responsible for the synthesis of ATP from ADP and P_i during electron transport. Together with similar enzymes found in chloroplasts and bacteria, the F_1 -ATPase has been the subject of intensive studies over the past years (for a recent review, see Ref. 2). Through an as yet poorly understood mechanism, these enzymes are structurally and functionally linked to a proton-translocating device, F_0 , across the membrane, and operate in this integrated form as reversible proton pumps capable of utilizing a trans-

Abbreviations: BPh, bathophenanthroline (4,7-diphenyl-1,10-phenanthroline); DPBP, 4,4-diphenyl-2,2-bipyridine; FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone; PDT, 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine; 5-PhoPh, 5-phenyl-1,10-phenanthroline; S-13, 3-chloro-3-butyl-2'-chloro-4'-nitrososalicylanilide; TMoPh, 3,4,7,8-tetramethyl-1,10-phenanthroline; TTFB, 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole; 1799, 2,6-dihydroxy-1,1,1,7,7,7-hexafluoro-2,6-bis(trifluoromethyl)heptan-4-one; oPh, o-phenanthroline (1, 10-phenanthroline); TPTZ, 2,4,6-tripyridyl-S-triazine.

membrane proton gradient as the driving force for ATP synthesis.

Various inhibitors have proved to be useful tools for studying the reaction mechanism of F_1 and its interaction with F_0 [3]. In our laboratory it was found that certain metal chelates of bathophenanthroline are potent inhibitors of soluble and membrane-bound mitochondrial ATPase [4,5]. A striking feature of this inhibition, not shared by previously known ATPase inhibitors, is its reversibility by uncouplers of oxidative phosphorylation. Evidence was obtained for a direct interaction between uncouplers and the inhibitory chelates [5]. Data were also briefly reported concerning the binding of the inhibitory chelates and of uncouplers to F_1 [6].

In the present paper these effects are investigated in some detail. A comparison of the effects of BPhmetal chelates with those of other inhibitors of F₁-ATPase is the subject of the accompanying paper [7].

Materials and Methods

 F_1 -ATPase. F_1 -ATPase was purified from beef heart mitochondria according to the method of

Horstman and Racker [8]. It had a specific activity of approx. $100 \mu \text{mol/min}$ per mg protein at 30°C . The enzyme was stored at 4°C in a 50% saturated $(\text{NH}_4)_2\text{SO}_4$ suspension containing 0.125 M sucrose, 50 mM Tris-H₂SO₄, 1 mM EDTA and 3 mM ATP (pH 7.6). Before use, an aliquot of the suspension was centrifuged, and the sediment was dissolved in 0.25 M sucrose, 10 mM Tris-H₂SO₄ and 2 mM EDTA (pH 7.6).

Submitochondrial particles. MgATP and EDTA particles were prepared from beef heart mitochondria as described by Lee and Ernster [9].

ATPase activity. ATPase activity was routinely assayed by coupling the reaction to the pyruvate kinase and lactate dehydrogenase systems and measuring NADH oxidation [1]. When indicated, ATPase activity was assayed directly by determining colorimetrically the amount of P_i liberated [10].

NADH oxidation. NADH oxidation was followed spectrophotometrically at 340 nm.

Oxidative phosphorylation. O_2 consumption was measured with a Clark oxygen electrode, and phosphate uptake was determined by the isotope distribution method [10].

Protein determinations. Soluble proteins was determined by the method of Lowry et al. [11] and particulate protein by the biuret method, using in both cases bovine serum albumin as standard.

Chelates. Chelates of bathophenanthroline and related compounds were prepared by dissolving the chelator in ethanol (except in the case of bathophenanthrolinesulfonate, which was dissolved in water) and mixing it with the appropriate concentration of the metal salt dissolved in water to give a final ethanol concentration of 50%.

Bathophenanthroline, bathophenanthrolinesulfonate, 5-PhoPh, DPBP, PDT and TPTZ were purchased from G. Frederick Smith Chemical Co. Other phenanthroline derivatives and BPh₃Ru²⁺ were kind gifts from Dr. David Sigman, Department of Biological Chemistry, University of California, Los Angeles.

Results

Effects of BPh-metal chelates on F₁-ATPase

Fig. 1 shows the effect of bathophenanthroline on the activity of beef heart mitochondrial F₁-ATPase in

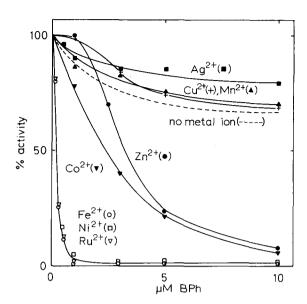
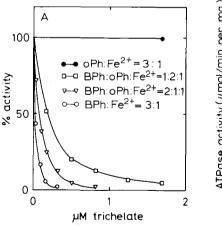


Fig. 1. Effect of bathophenanthroline on F₁-ATPase activity in the presence of various metal ions. The assay medium contained 25 mM Tris-acetate, 30 mM potassium acetate, 3 mM magnesium acetate, 0.2 mM NADH, 1 mM phosphoenolpyruvate, 50 μ g lactate dehydrogenase, 50 μ g pyruvate kinase and 3 mM ATP (pH 7.6). Bathophenanthroline was added in varying concentrations as the preformed metal trichelate. The reaction was started by addition of 2.5 μ g F₁ to a total volume of 3 ml.

the presence of various metal ions. The strongest inhibition was obtained in the presence of Fe²⁺, Ni²⁺ or Ru2+, when these ions were added as the preformed BPh-metal chelates prepared by mixing bathophenanthroline and the metal ions in concentration ratios of 3. Under these conditions, the BPh-metal chelates are predominantly formed, as judged from the available stability constants of the corresponding o-phenanthroline chelates [12]. Co²⁺ and Zn²⁺, which also form stable trichelates with bathophenanthroline, although weaker than Fe2+, Ni2+ or Ru2+, likewise enhanced the inhibition of F₁ by bathophenanthroline; however, the inhibition was weaker than in the case of Fe2+, Ni2+ or Ru2+. In all cases, the inhibition decreased when the BPh: metal ion ratio was lowered to 1, and the inhibition did not increase when the BPh: metal ion ratio was increased above 3. Mn²⁺, which forms a weak chelate with bathophenanthroline, did not enhance the effect of the latter.

The above-mentioned metal ions are known to

form octahedral trichelates with o-phenanthroline [13]. Cu^{2+} and Ag^{2+} , which also form stable trichelates with o-phenanthroline, but do not give rise to octahedral structures, did not enhance the bathophenanthroline inhibition of F_1 . It would thus appear that the inhibition requires an octahedral BPh-metal trichelate. The weak inhibition found with bathophenantroline alone may well be due to a trace of a metal ion in the incubation medium and may also explain the earlier reported stronger inhibition [4], if one assumes that some of the reagents was contaminated by, e.g., Fe^{2+} .


Effects of other chelators

The inhibitory effect of the BPh-metal chelates on F₁-ATPase proved to be highly specific for bathophenanthroline, not being shared even by closely related phenanthrolines. Some relevant data are summarized in Table I, which compares the effects of various phenanthrolines and related compounds, all treated as the preformed Fe²⁺ trichelates (except in the case of TPTZ, which only forms an Fe2+ dichelate), on beef heart F₁-ATPase. The only compound tested that gave an effect comparable in strength to that of bathophenanthroline was DPBP. Omission, relocation or replacement of the phenyl groups abolished or greatly diminished the inhibitory effect, as did conversion of bathophenanthroline to the water-soluble bathophenanthrolinesulfonate. As expected, mixed chelates, e.g., those containing both bathophenanthroline and o-phenanthroline, had weaker effects than BPh₂Fe²⁺ (Fig. 2A). Furthermore, Fe²⁺ chelators other than bathophenanthroline could relieve the inhibitory effect of the latter (Fig. 2B).

Effects of uncouplers on BPh_3Fe^{2+} -inhibited F_1 ATPase

Fig. 3 illustrates the relief of the BPh₃Fe²⁺ inhibition of F₁-ATPase by various uncouplers. This effect was observed with all the uncouplers tested thus far, including S-13. FCCP, TTFB, dicoumarol, gramicidin D, 2,4-dinitrophenol and 1799 (Fig. 3A), and the relative efficiencies of the various substances in relieving the BPh₃Fe²⁺ inhibition of F₁ were similar to their known uncoupling activities on mitochondrial oxidative phosphorylation [14]. A good correlation between the uncoupling effect on oxidative phosphorylation and the ability to relieve the BPh₃Fe²⁺ inhibition is also found when comparing various phenols (Fig. 3B). An interesting exception is picrate. which is a poor uncoupler of oxidative phosphorylation but efficiently relieves the BPh₃Fe²⁺ inhibition of F₁-ATPase. However, as shown by Hanstein and Hatefi [15], the lack of uncoupling effect of picrate on intact mitochondria is probably due to the impermeability of the mitochondrial inner membrane to picrate.

Effects of anions on BPh₃Fe²⁺-inhibited F₁-ATPase Anions such as phosphate (20 mM), sulfate (150

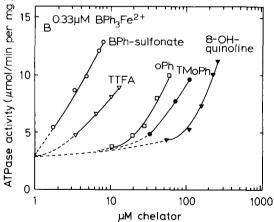


Fig. 2. Effects of other chelators on BPh₃Fe²⁺ inhibition of F_1 -ATPase. Comparison of the inhibitory effects of preformed mixed chelates containing different oPh: BPh: Fe²⁺ ratios on F_1 -ATPase activity (A), and the effects of other Fe²⁺ chelators on the BPh₃Fe²⁺ inhibition of F_1 -ATPase activity (B). TTFA, thenoyltrifluoroacetone.

TABLE I
EFFECT OF VARIOUS CHELATES ON F₁-ATPase ACTIVITY

Chelator (added as Fe ²⁺ trichelate) ^a		Chelate (µM)	Relative ATPase activity	
BPh		0.67 3.33	0	
DPBP		0.67 3.33	15 1	
PDT		0.67 3.33	27 5	
5-PhopH		0.67 3.33	67 33	
TMoPh	-\d\dagge\degrees	0.67 3.33	70 43	
4,7-Dimethyl-1,10-phenanthroline		0.67 3.33	96 43	
5-Methyl-1,10-phenantholine		3.33	76	
oPh		33 250	100 83	
Na: Bathophenanthrolinedisulfonate		33	100	

TABLE I (continued)

Chelator (added as Fe ²⁺ trichelate) ^a	Chelate (µM)	Relative ATPase activity
TPZT	0.67 3.33	100 100

^a Except in the case of TPTZ, which only forms an Fe²⁺ dichelate.

mM) and sulfite (4 mM), which have been shown to activate F₁-ATPase, did not relieve the inhibition by BPh₃Fe²⁺ (cf. Ref. 5). Conversely, uncouplers did not relieve the inhibition of F₁-ATPase by azide [1], aurovertin [16], 4-chloro-7-nitrobenzofuran [17,18] or the protein inhibitor described by Pullman and Monroy [19].

Influence of pH of F_1 -ATPase, its inhibition by BPh_3Fe^{2+} and reactivation by FCCP

As shown in Fig. 4, the inhibition of F₁-ATPase by BPh₃Fe²⁺ was virtually independent of the pH of the medium in the range 6.0–8.7. The relief of the inhibition by FCCP decreased in efficiency with increasing pH. The ATPase activity itself had a pH optimum at 8.6, in accordance with earlier reports [20].

Effects of uncouplers on inhibition of F_1 -ATPase by various inhibitory chelates

As illustrated by the data in Table II, uncouplers, such as FCCP, relieved the inhibition of F₁-ATPase not only by BPh₃Fe²⁺ but also by BPh₃Ni²⁺ and BPh₃Ru²⁺ as well as DPBP₃Fe²⁺ and PDT₃Fe²⁺. In the case of PDT₃Fe²⁺, which is a relatively weak inhibitor, the uncoupler effect also is weaker. In general, as shown earlier [5] and further demonstrated below, the concentration of uncoupler needed for relief of the inhibition increases with the concentration of inhibitor used.

Relationship between inhibitor and uncoupler concentrations

Fig. 5 compares titrations of the relief of BPh₃Fe²⁺

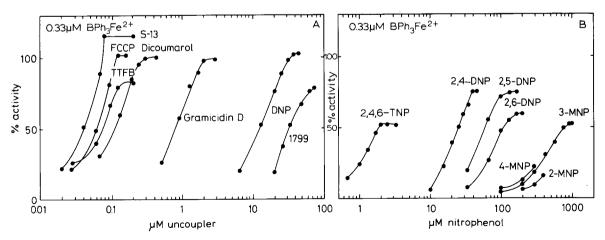


Fig. 3. Effects of uncouplers on F₁-ATPase activity inhibited by BPh₃Fe²⁺. DNP, dinitrophenol; TNP, trinitrophenol; MNP, mononitrophenol.

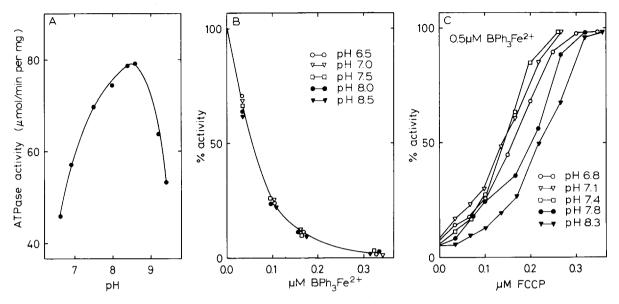


Fig. 4. Influence of pH on F₁-ATPase activity (A), its inactivation by BPh₃Fe²⁺ (B) and reactivation by FCCP (C).

inhibition of F_1 -ATPase by the uncouplers S-13, FCCP and 2,4-dinitrophenol. In all these cases, the titration curves were sigmoidal when using a BPh_3Fe^{2+} concentration in excess of that needed for maximal inhibition. The sigmoidicity disappears as the BPh_3Fe^{2+} concentration is decreased so as to be just sufficient to give near-maximal inhibition. This

TABLE II $\begin{tabular}{ll} \begin{tabular}{ll} EFFECT OF FCCP ON THE INHIBITION OF F_1-ATPase ACTIVITY BY VARIOUS CHELATES \end{tabular}$

FCCP was added at a concentration twice as high as that of the chelate.

Chelate	Concentration (µM)	Relative ATPase activity	
		-FCCP	+FCCP
BPh ₃ Fe ²⁺	0.10	10	92
BPh ₃ Fe ²⁺	0.33	2	73
BPh ₃ Ru ²⁺	0.10	27	90
BPh ₃ Ru ²⁺	0.33	2	90
BPh ₃ Ni ²⁺	0.10	90	100
BPh ₃ Ni ²⁺	0.33	5	90
DPBP3Fe ²⁺	0.10	80	93
DPBP ₃ Fe ²⁺	0.33	29	91
PDT ₃ Fe ²⁺	0.67	21	85
PDT ₃ Fe ²⁺	3.33	4	30

type of effect is consistent with a direct interaction between the uncouplers and the inhibitor, resulting in an 'inactivation' of the inhibitor.

Interaction between inhibitory chelates and uncouplers: Spectral evidence

Direct evidence for an interaction between BPh₃Fe²⁺ and various uncouplers was obtained in the form of spectral changes that occurred when BPh₃Fe²⁺ was mixed with various uncouplers in an aqueous medium in the absence of F₁ [5]. In the experiment shown in Fig. 6A, the visible spectrum of 20 µM BPh₃Fe²⁺ was recorded in the presence of

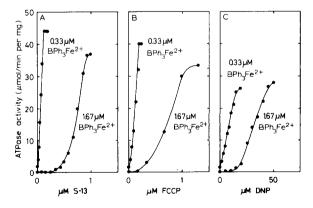


Fig. 5. Relationship between inhibitor and uncoupler concentrations. DNP, 2,4-dinitrophenol.

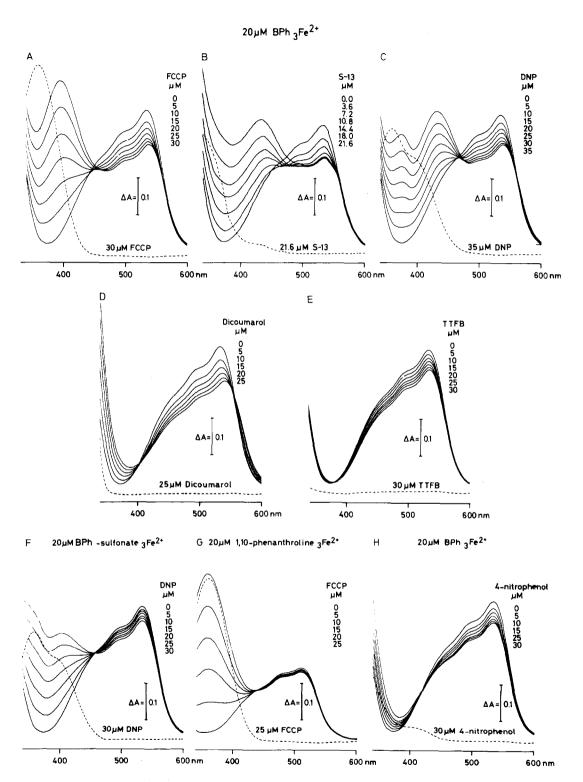


Fig. 6. Spectra of inhibitory and noninhibitory chelates in the presence of various uncouplers. DNP, 2,4-dinitrophenol.

increasing concentrations of FCCP. It may be seen that increasing concentrations of FCCP caused a progressive decrease and a slight red shift of the 535 nm absorption maximum of BPh₃Fe²⁺ which approached an asymptote when the FCCP concentration exceeded that of BPh₃Fe²⁺. Simultaneously, there appeared a new peak at 400 nm, which increased with increasing FCCP concentration. The dotted line indicates the visible spectrum of FCCP in the absence of BPh₃Fe²⁺. It is clear that the new peak represents a shift of the absorption spectrum of FCCP. In other words, it appears that BPh₃Fe²⁺ and FCCP interact in such a way as to cause a decrease and a red shift in the absorption maxima of both bPh₃Fe²⁺ and FCCP.

As shown in Fig. 6B-E, similar changes were found when BPh₃Fe²⁺ was mixed with other uncouplers such as S-13, 2,4-dinitrophenol, dicoumarol and TTFB, in the sense that all gave a decrease, and, with the possible exception of TTFB, a slight red shift of the absorption maximum of BPh₃Fe²⁺, Also similar to FCCP, 2,4-dinitrophenol underwent a spectral shift, consisting of a splitting of its peak and soulder into two distinct absorption maxima at higher wavelengths, which increased with increasing 2,4dinitrophenol concentration. The other uncouplers lack absorption in the visible region, and there appears no peak in this region in the presence of BPh₃Fe²⁺. The occurrence of spectral changes of uncouplers in the ultraviolet region is not possible to detect in the presence of BPh₃Fe²⁺.

It is noteworthy that changes similar to those shown in Fig. 6A—E were not found when a non-inhibitory phenanthroline-Fe²⁺ complex was mixed with an uncoupler or when BPh₃Fe²⁺ was mixed with a nonuncoupling phenol. This is illustrated in Fig. 6F—H by the combinations BPh-sulfonate₃Fe²⁺-FCCP, oPh₃Fe²⁺-2,4-dinitrophenol, and BPh₃Fe²⁺-4-nitrophenol. In all three cases, the absorption spectrum of the phenanthroline-Fe²⁺ chelate remained unchanged, except for a slight decrease in the 535 nm peak, due to dilution. Furthermore, FCCP and 2,4-dinitrophenol underwent no spectral shift.

Separation of inhibitory chelates and their uncoupler adducts

The interaction between BPh₃Fe²⁺ and uncouplers was further studied by investigating the distribution

of these compounds between water and diethyl ether. In the experiment in Fig. 7A, 50 nmol of BPh₃Fe²⁺ and varying amounts of FCCP, dissolved in a few microliters of 50 and 95% ethanol, respectively, were mixed in 5 ml of 25 mM Tris-HCl (pH 7.5) and extracted with 5 ml diethyl ether. In the absence of FCCP, all BPh₃Fe²⁺ remained in the water phase. With increasing concentrations of FCCP, an increasing proportion of BPh₃Fe²⁺ was recovered in the ether phase, reaching 100% at a molar ratio of BPh₃Fe²⁺: FCCP of approx. 2. In all samples, except in those containing molar ratios of BPh₃Fe²⁺: FCCP of 0.5 and 1, practically all FCCP was recovered in the ether phase. At BPh₃Fe²⁺: FCCP molar ratios of 0.5 and 1, some FCCP was found in the water phase. These data are consistent with the interpretation that BPh₃Fe²⁺ and FCCP form a complex with a stoichiometry of BPh₃Fe²⁺: FCCP = 2, and that the latter is less polar than either FCCP or BPh₃Fe²⁺ itself. The simplest explanation of these findings is that FCCP, which is a weak monovalent acid, neutralizes the positive charges of BPh₃Fe²⁺ and forms a strong hydrophobic complex with the latter.

Similar findings were made with another uncoupler, dicoumarol (Fig. 7B), except that dicoumarol was partly recovered in the water phase even in the absence of BPh₃Fe²⁺. However, just as in the case of FCCP, practically all dicoumarol and BPh₃Fe²⁺ was recovered in the ether phase at a molar ratio of BPh₃Fe²⁺: dicoumarol of 2, indicative of the formation of a nonpolar complex between the two with the above stoichiometry.

Data summarized in Table III relate to similar experiments with other chelates and uncouplers. The conclusions that can be derived from these data are as follows: (1) S-13 and BPh₃Fe²⁺ influence their mutual distribution between water and ether in a way which is consistent with the formation of a complex between the two. In contrast to the FCCP and dicoumarol complexes of BPh₃Fe²⁺, the S-13 complex is recovered in the water phase. Its stoichiometry cannot be deduced from the data. (2) 2,4-Dinitrophenol and BPh₃Fe²⁺ influence their mutual distribution between water and ether in a way which is consistent with the formation of a complex between the two. Similar to the FCCP and dicoumarol complexes of BPh₃Fe²⁺, the 2,4-dinitrophenol complex is less polar than BPh₃Fe²⁺ alone, but also less polar than 2,4-

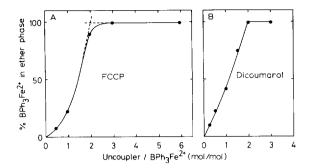


Fig. 7. Distribution of inhibitory chelates and their uncoupler adducts between water and diethyl ether. For experimental conditions see text. Visible spectra of water and ether phases were recorded.

dinitrophenol alone. The stoichiometry of the complex is not known. (3) DPBP₃Fe²⁺ interacts with FCCP and dicoumarol in a fashion similar to that of BPh₃Fe²⁺, but the stoichiometry of the complex has not been determined. (4) The following chelates and uncouplers did not influence each other's distribution between water and ether: oPh₃Fe²⁺-FCCP, oPh₃Fe²⁺-

dicoumarol, BPh-sulfonate₃Fe²⁺-FCCP, TMoPh₃Fe²⁺-FCCP and 5-PhoPh₃Fe²⁺-FCCP. These data are consistent with a correlation between chelates that inhibit F_1 -ATPase and those capable of complex formation with uncouplers.

Binding of BPh_3Fe^{2+} to F_1

When F_1 was mixed with an excess of BPh₃Fe²⁺ and passed through a Sephadex G-25 column the enzyme was accompanied by BPh₃Fe²⁺, as determined spectrophotometrically, in an amount that reached asymptotically a value of 3 mol bPh₃Fe²⁺/ mol F_1 when the eluate was allowed to stand at room temperature (Fig. 8). Initially, the eluate contained an additional amount of BPh₃Fe²⁺, which probably represents unspecific, loose binding, and which dissociates into bathophenanthroline and Fe²⁺ as it is released from the enzyme; the dissociation is enhanced by EDTA [6]. The F_1 (BPh₃Fe²⁺)₃ complex was enzymically inactive and could be reactivated by uncouplers. Little or no binding to F_1 was obtained with oPh₃Fe²⁺ and BPh₃Fe²⁺-sulfonate.

TABLE III

DISTRIBUTION OF VARIOUS CHELATES AND/OR UNCOUPLERS BETWEEN WATER AND DIETHYL ETHER
50 nmol of the chelate and 150 nmol of the uncoupler were used. Other conditions as described in the text.

Sample	Distribution		
	Ether phase	Water phase	
BPh ₃ Fe ²⁺		100% BPh ₃ Fe ²⁺	
FCCP	100% FCCP	-	
BPh ₃ Fe ²⁺ + FCCP	100% BPh ₃ Fe ²⁺ + 100% FCCP		
2,4-Dinitrophenol	-	100% 2,4-dinitrophenol	
BPh ₃ Fe ²⁺ + 2,4 dinitrophenol	50% BPh ₃ Fe ²⁺ + $50%$ 2,4-dinitrophenol		
S-13	100% S-13		
$BPh_3Fe^{2+} + S-13$	some S-13	$100\% \text{ BPh}_3\text{Fe}^{2+} + \text{some S-}13$	
Dicoumarol	30% Dicoumarol	70% Dicoumarol	
BPh ₃ Fe ²⁺ + Dicoumarol	100% BPh ₃ Fe ²⁺ + 67% Dicoumarol	33% Dicoumarol	
DPBP ₃ Fe ²⁺	·	100% DPBP	
DPBP ₃ Fe ²⁺ + FCCP	100% DPBP ₃ Fe ²⁺ + 100% FCCP		
DPBP ₃ Fe ²⁺ + Dicoumarol	100% DPBP ₃ Fe ²⁺ + 67% Dicoumarol	33% Dicoumarol	
oPh ₃ Fe ²⁺		100% oPh ₃ Fe ²⁺	
oPh ₃ Fe ²⁺ + FCCP	100% FCCP		
BPh-sulfonate ₃ Fe ²⁺		100% BPh-sulfonate ₃ Fe ²⁺	
BPh-sulfonate ₃ Fe ²⁺ + FCCP	100% FCCP		
TMoPh ₃ Fe ²⁺		100% TMoPh ₃ Fe ²⁺	
TMoPh ₃ Fe ²⁺ + FCCP	100% FCCP	-	
5-PhoPh ₃ Fe ²⁺		100% 5-PhoPh ₃ Fe ²⁺	
5-PhoPh ₃ fe ²⁺ + FCCP	100% FCCP		

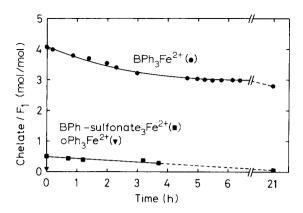


Fig. 8. Binding of BPh₃Fe²⁺ to F₁. 10 μ M F₁ was mixed with 250 μ M BPh₃Fe²⁺ in a buffer containing 0.25 M sucrose and 10 mM Tris-H₂SO₄ (pH 7.6). 100 μ l of this mixture were applied on a 11 × 0.76 cm Sephadex G-25 medium column and eluted with the same buffer at room temperature. For other experimental conditions see text. Concentrations of chelates were determined using an absorption coefficient at 535 nm of 22 mM⁻¹ · cm⁻¹ for BPh₃Fe²⁺ and BPh-sulfonate₃Fe²⁺ and an absorption coefficient at 510 nm of 11 mM⁻¹ · cm⁻¹ for oPh₃Fe²⁺. Molarity of F₁ was calculated assuming a molecular weight of 360 000 and 100% purity.

Binding of uncouplers to the F_1 -BPh₃Fe²⁺ complex

When an uncoupler (2.4-dinitrophenol or FCCP) was included in the enzyme/BPh₃Fe²⁺ mixture before application on the Sephadex column, it did not influence the extent of BPh₃Fe²⁺ binding (cf. Fig. 8) and the presence of uncoupler could be detected spectrophotometrically in the fraction containing the F₁ (BPh₃Fe²⁺)₃ complex (Fig. 9). No uncoupler was eluted together with the enzyme in the absence of BPh₃Fe²⁺. The spectrum of the uncoupler in the eluted F₁-BPh₃Fe²⁺-uncoupler fraction was shifted to 400 nm, in a manner typical of the interaction of uncouplers with BPh₃Fe²⁺ as found in the absence of F₁ (see Fig. 6). It thus appears that the uncoupler in the eluate in Fig. 9 is bound to the BPh₃Fe²⁺ moiety of the F_1 -(BPh₃Fe²⁺)₃ complex. The F_1 -(BPh₃Fe²⁺)₃uncoupler complex was enzymically active and was similar to F_1 in terms of maximal velocity and K_m for ATP.

When relatively high concentrations of F_1 were titrated with BPh₃ Fe²⁺, complete inhibition could be extrapolated to occur at about 3 mol BPh₃Fe²⁺/mol F_1 (Fig. 10), in agreement with the binding data.

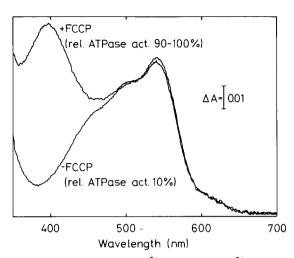


Fig. 9. Spectra of F_1 -BPh₃Fe²⁺ and F_1 -BPh₃Fe²⁺-FCCP. The complexes were obtained as described in Fig. 8 and in the text.

Effect of bPh₃Fe²⁺ on oligomycin-sensitive ATPase

As reported earlier [5], bPh₃Fe²⁺ also inhibited particulate oligomycin-sensitive mitochondrial ATPase (prepared as 'Complex V' [21]) and this inhibition was similarly relieved by uncouplers. Indeed, as reported elsewhere [22], BPh₃Fe²⁺ appears to be a general inhibitor of enzymes catalyzing the hydrolysis of pyrophosphate bonds.

Effect of BPh₃Fe²⁺ on oxidative phosphorylation

As expected, BPh₃Fe²⁺ also inhibits oxidative phosphorylation, although this effect cannot readily be demonstrated because of the inhibition of electron transport by bathophenanthroline [23,24]. However, as shown in Table IV, addition of BPh₃Fe²⁺ to phosphorylating submitochondrial (Mg²⁺-ATP) particles from beef heart caused a decrease in ATP synthesis coupled to NADH oxidation, which was greater than the inhibition of NADH oxidase, resulting in a decrease in the P/O ratio. Low concentrations of BPh₃Fe²⁺ stimulated respiration; the reason for this effect is not understood.

Influence of BPh_3Fe^{2+} on the uncoupling effect of FCCP

It has also been possible to show that BPh₃Fe²⁺ is capable of abolishing the uncoupling effect of a typical uncoupler such as FCCP. In the experiment in Fig. 11, the oligomycin-induced respiratory control

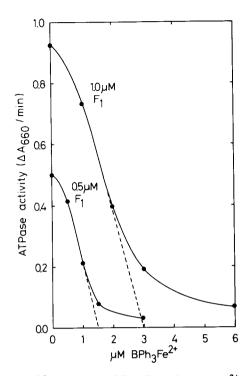


Fig. 10. Inhibition of F_1 -ATPase by BPh_3Fe^{2+} at high protein concentrations. ATPase activity was assayed by determining the amount of P_i liberated. The assay medium contained 25 mM Tris-acetate, 30 mM potassium acetate, 3 mM magnesium acetate and 3 mM ATP (pH 7.6). BPh_3Fe^{2+} and F_1 were added at varying concentrations as indicated.

of the NADH oxidase activity of EDTA particles prepared from beef heart mitochondria [25] was measured in the absence and presence of FCCP and with varying concentrations of BPh₃Fe²⁺. In the absence of FCCP, BPh₃Fe²⁺ did not inhibit respiration, and even caused a moderate increase in oxygen uptake at higher concentrations. In the presence of FCCP, respiration was diminished by low concentrations of BPh₃Fe²⁺ down to the level found in the absence of FCCP. Evidently, BPh₃Fe²⁺ abolished the uncoupling effect of FCCP.

Discussion

The present data confirm and extend previous reports from this laboratory [4–6] concerning the inhibitory effect of certain BPh-metal ion trichelates on mitochondrial F_1 -ATPase. The data are consistent with the conclusion that only those metal ions that form stable, octahedral trichelates with bathophenan-

TABLE IV

EFFECT OF BPh_3Fe^{2+} ON OXIDATIVE PHOSPHORYLATION

Oxidative phosphorylation was measured at 30° C in 2.7 ml reaction mixture containing 170 mM sucrose, 50 mM Trisacetate (pH 7.6), 5 mM P_i (0.4 μ Ci 32 P/ μ mol P_i), 2.5 mM ADP, 3 mM magnesium acetate, 1 mM NADH, 20 mM glucose, 50 μ g hexokinase and 0.75 mg submitochondrial (Mg-ATP) particles. When approx. 1 μ gatom O was consumed, the reaction was quenched by mixing with 0.5 of perchloric acid and the distribution of 32 P between isobutanol/benzene and water was determined.

BPh ₃ Fe ²⁺ (μM)	O ₂ consumption (μg atom/min per mg)	P/O
0.0	0.57	1.10
5.0	0.74	0.73
10.0	0.91	0.24
15.0	1.02	0.22
18.5	0.38	0.17

throline are effective. There appears to be a high degree of specificity concerning bathophenenthroline and, in particular, its phenyl groups. Omission, replacement, substitution or relocation of these groups greatly diminished or abolished the inhibitory effect. Replacement of the phenanthroline structure by dipyridine, with retention of the phenyl substi-

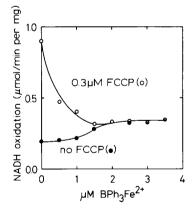


Fig. 11. Influence of BPh₃Fe²⁺ on the uncoupling effect of FCCP. NADH oxidation was measured at 30°C in 3 ml reaction mixture containing 170 mM sucrose, 50 mM Tris-acetate (pH 7.6), 0.2 M NADH, 3 μ g oligomycin, 0.1 mg submitochondrial (EDTA) particles and varying concentrations of BPh₃Fe²⁺ in the absence or presence of 0.3 μ M FCCP. BPh₃Fe²⁺ and FCCP were added as premixed complex in 30 μ l of 50% ethanol.

tuents, preserved the inhibitory effect, although weakening it somewhat.

The reversibility by uncouplers is a unique feature of the inhibition of F₁-ATPase by BPh-metal trichelates, which is not shared by other inhibitors such as aurovertin [16], 4-chloro-7-nitrobenzofuran [17,18], azide [1], or the inhibitor protein of Pullman and Monroy [19]. As has been pointed out [5], this is the first instance where low concentrations of uncouplers are found to act on a vesicle-free, water-soluble, energy-transducing enzyme. This effect is not to be confused with the stimulation of F₁-ATPase by relatively high concentrations of certain phenolates [1] and other anions [26-28] which is observed in the absence of any added inhibitors. From the data reported earlier [5] and in the present paper, it appears that the uncouplers interact directly with the inhibitory chelates, forming stoichiometric adducts, in which the positive charges of the chelates are compensated by the negative charges of the uncouplers.

Data presented earlier [6] and in this paper demonstrate a strong binding between F_1 and the inhibitory chelate, with a stoichiometry of three molecules of chelate per molecule of F_1 . As shown in the accompanying paper [7], the binding probably occurs to the β -subunit of F_1 . The present data also indicate that the relief of the inhibition by uncouplers most likely involves a binding of the uncouplers to the enzyme-chelate complex, rather than a release of the chelate from the enzyme. The interactions between the enzyme (E), inhibitory chelate (I) and uncoupler (U) may be described by the following equations (for the sake of simplicity written as involving one molecule of each):

$$E + I \rightleftharpoons EI \tag{1}$$

$$EI + U \rightleftharpoons EIU \tag{2}$$

$$I + U \rightleftharpoons IU \tag{3}$$

where E and EIU are active forms of the enzyme, and EI is an inactive form. Direct evidence for the formation of both EI and EIU is presented in Fig. 9. The above equations explain how a substoichiometric amount of an uncoupler (e.g., S-13; cf. Fig. 5) in relation to the amount of BPh₃Fe²⁺ may bring about a

virtually complete reactivation of F_1 ; this will occur if U reacts preferentially with EI (according to Eqn. 2) as compared to its reaction with free I (Eqn. 3). The total amount of uncoupler required for relieving the inhibition will of course be dependent on the amount of free as well as enzyme-bound inhibitor (Fig. 5).

It was concluded earlier [4] that the effect of uncouplers in relieving the inhibition of F₁-ATPase by bPh-metal ion chelates probably is related to their effect on oxidative phosphorylation. This conclusion was based on the arguments that: (a) the effect of uncouplers on oxidative phosphorylation cannot involve F₁, since uncouplers are known to relieve oligomycin-induced respiratory control in F₁-depleted submitochondrial particles [29,30]; and (b) the effect of uncouplers in relieving the inhibition by BPh-metal chelates cannot be due to a direct interaction between inhibitor and uncoupler, because of the substoichiometric amounts of certain uncouplers needed for the relief of inhibition. While the first argument certainly is valid, the second seems to require revision on the basis of the data just presented. Moreover, it appears from the present data that only those chelates that can interact with uncouplers are inhibitors of F₁. Further aspects of the possible mode of action of BPh-metal chelates and uncouplers on F₁-ATP ase are discussed in the accompanying paper [7].

Acknowledgements

This work has been supported by the Swedish Natural Science Research Council and the Swedish Cancer Society.

References

- 1 Pullman, M.E., Penefsky, H.S., Datta, A. and Racker, E. (1960) J. Biol. Chem. 235, 3322-3329
- 2 Penefsky, H.S. (1979) Adv. Enzymol. 49, 223-280.
- 3 Ernster, L., Sandri, G., Hundal, T., Carlsson, C. and Nordenbrand, K. (1977) in Structure and Function of Energy Transducing Membranes (Van Dam, K. and Van Gelder, B.S., eds.), BBA Library, vol. 14, pp. 209-222, North-Holland, Amsterdam
- 4 Phelps, D.C., Nordenbrand, K., Nelson, B.D. and Ernster, L. (1975) Biochem. Biophys. Res. Commun, 63, 1005-1012
- 5 Phelps, D.C., Nordenbrand, K., Hundal, T., Carlsson, C.,

- Nelson, B.D. and Ernster, L. (1975) in Electron Transfer Chains and Oxidative Phosphorylation (Quagliariello, E., Papa, S., Palmiari, F., Slater, E.C. and Siliprandi, N., eds.), pp. 385-400, North-Holland, Amsterdam
- 6 Carlsson, C., Hundal, T., Nordenbrand, K. and Ernster, L. (1978) in The Proton and Calcium Pumps (Azzone, G.F., Avron, M., Metcalfe, J.C., Quagliariello, E. and Siliprandi, N., eds.), pp. 177-184, North-Holland, Amsterdam
 - N., eds.), pp. 177-184, North-Holland, Amsterdam
- 7 Carlsson, C. and Ernster, L. (1981) Biochim. Biophys. Acta 638, 358-364
- 8 Horstman, L.L. and Racker, E. (1970) J. Biol. Chem. 245, 1336-1344
- 9 Lee, C.P. and Ernster, L. (1967) Methods Enzymol. 10, 543-548
- 10 Lindberg, O. and Ernster, L. (1956) Methods Bicohem. Anal. 3, 1-22
- 11 Lowry, O.H., Rosebrough, N.J. Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275
- 12 Sillén, L.G. and Martell, A.E. (1964) Stability Constants, The Chemical Society, London
- 13 Jørgensen, C.K. (1963) Inorganic Complexes, Academic Press, New York.
- 14 Altman, P.L. and Dittmer Katz, D. (1976) Cell Biology I pp. 207-217, Fed. Am. Soc. Exp. Biol., Bethesda, MD
- 15 Hanstein, W.G. and Hatefi, Y. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 288-292
- 16 Lardy, H.A., Connelly, J.L. and Johnson, D. (1964) Biochemistry 3, 1961-1968
- 17 Ferguson, S.J., Lloyd, W.J., Lyons, M.H. and Radda, G.K. (1975) Eur. J. Biochem. 54, 117-126

- 18 Ferguson, S.J., Lloyd, W.J. and Radda, G.K. (1975) Eur. J. Biochem. 54, 127-133
- 19 Pullman, M.E. and Monroy, G.C. (1963) J. Biol. Chem. 238, 3762-3769
- 20 Pullman, M.E. and Penefsky, H.S. (1963) Methods Enzymol. 6, 277-294
- 21 Stiggall, D.L., Galante, Y.M. and Hatefi, Y. (1979) Methods Enzymol. 55, 308-315
- 22 Carlsson, C. and Ernster, L. (1980) in Frontiers of Bioorganic Chemistry and Molecular Biology (Ananchenko, S.N., ed.) pp. 1-9, Pergamon Press, Oxford
- 23 Tappel, A.L. (1960) Biochim, Pharm. 3, 289-296
- 24 Phelps, D.C., Harmon, H.J. and Crane, F.L. (1974) Biochem. Biophys. Res. Commun. 59, 1185–1191
- 25 Lee, C.P. and Ernster, L. (1968) Eur. J. Biochem. 3, 391-400
- 26 Lambeth, D.O. and Lardy, H.A. (1971) Eur. J. Biochem. 22, 355-363
- 27 Stockdale, M. and Selwyn, M.J. (1971) Eur. J. Biochem. 21, 416-423
- 28 Cantey, L.C. and Hammes, G.G. (1973) Biochemistry 12, 4900-4904
- 29 Ernster, L., Nordenbrand, K., Chude, O. and Juntti, K. (1974) in Membrane Proteins in Transport and Phosphorylation (Azzone, G.F., Avron, M., Metcalfe, J.C., Quagliariello, E. and Siliprandi, N., eds.), pp. 29-41, North-Holland, Amsterdam
- 30 Lee, C.P., Huang, C.H. and Cierkosz, B.I.T. (1974) in Membrane Proteins in Transport and Phosphorylation (Azzone, G.F., Avron, M., Metcalfe, J.C., Quagliariello, E. and Siliprandi, N., eds.), pp. 161-170 North-Holland, Amsterdam